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New classes of modified teleparallel theories of gravity are introduced. The action of this theory is 
constructed to be a function of the irreducible parts of torsion f (Tax, T ten, Tvec), where Tax, T ten and 
Tvec are squares of the axial, tensor and vector components of torsion, respectively. This is the most 
general (well-motivated) second order teleparallel theory of gravity that can be constructed from the 
torsion tensor. Different particular second order theories can be recovered from this theory such as new 
general relativity, conformal teleparallel gravity or f (T ) gravity. Additionally, the boundary term B which 
connects the Ricci scalar with the torsion scalar via R = −T + B can also be incorporated into the action. 
By performing a conformal transformation, it is shown that the two unique theories which have an 
Einstein frame are either the teleparallel equivalent of general relativity or f (−T + B) = f (R) gravity, as 
expected.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

General Relativity (GR) is very successful theory accurately de-
scribing the dynamics of the solar system. All predictions of gen-
eral relativity, including gravitational waves, have now been exper-
imentally verified. Nonetheless, when applied to the entire Uni-
verse, we are faced with conceptual and observational challenges 
that are sometimes simply summarised as the dark energy and the 
dark matter problems. When considering the total matter content 
of the Universe, it turns out that approximately 95% is made up 
of these two components we do not fully understand yet. This, to-
gether with developments in other fields of physics has motivated 
a variety of models which can be seen as extensions or modifica-
tions of general relativity.

Perhaps surprisingly, alternative formulations of general relativ-
ity were constructed and discussed shortly after the formulation 
of the Einstein field equations. One such description, which is of 
particular interest to us, is the so-called teleparallel equivalent 
of general relativity (TEGR). Its equations of motion are identical 
to those of general relativity, their actions only differ by a total 
derivative term. While both theories are conceptually different, ex-
perimentally these two theories are indistinguishable.
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Both theories have been modified in the past which led to the 
emergence of two popular modified gravity models, namely f (R)

and f (T ) gravity theories [1–6]. These theories are physically dis-
tinct and also have very different characteristic features. The field 
equations of f (R) gravity are of fourth order while the field equa-
tions of f (T ) gravity are of second order. The precise relationship 
between these two distinct theories was recently established in [7]
starting from a slightly more general theory which also takes into 
account a boundary term B . This boundary term is the difference 
between the Ricci scalar R and the torsion scalar T , R = −T + B . 
It is then possible to build a theory based on f (T , B) that contains 
both f (R) and f (T ) gravities as limits.

Another approach of modifying teleparallel gravity was already 
considered in 1970s [8] where it was called ‘New General Rel-
ativity’. In this model the torsion tensor is decomposed into its 
three irreducible components known as the vector, axial and tensor 
part. These three pieces are then squared and a linear functional 
of these squared quantities is considered. For a certain parameter 
choice, this theory becomes the teleparallel equivalent of general 
relativity.

In the present paper we are studying a rather natural mod-
ification of teleparallel theories of gravity that combines aspects 
of both f (T ) gravity and New General Relativity. We start with 
squares of the three irreducible components of the torsion ten-
sor which we will denote as Tvec, Tax and T ten, and consider a 
non-linear functional depending on all three torsion pieces. We 
can then formulate a novel modified model based on the function 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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f (Tvec, Tax, T ten). It is our main point of this paper to argue that 
this theory is the most general (well-motivated) modified telepar-
allel theory and essentially all previously studied teleparallel mod-
els can be viewed as its special limiting cases. It is also possible 
to make connection with theoretical continuum mechanics mod-
els which are also formulated using the irreducible torsion pieces, 
see [9,10].

The main advantage of this general framework is that it allows 
us to study general properties of teleparallel models. Our anal-
ysis of conformal symmetries motivates the introduction of the 
boundary term and considers a further generalization based on the 
function f (Tvec, Tax, T ten, B). We find then that two unique theo-
ries with an Einstein frame are either the teleparallel equivalent of 
general relativity or f (R) gravity theory.

The notation of this paper is the following: Latin indices denote 
tangents space coordinate whereas Greek indices denote space-
time coordinates. The tetrad and the inverse of the tetrad are 
denoted as ea

μ and Ea
μ respectively.

2. Teleparallel gravity models

Teleparallel theories of gravity are based on the idea of work-
ing within a geometrical framework where the notion of paral-
lelism is globally defined. In the standard formulation of general 
relativity this is only possible for spacetimes which are flat and 
hence are completely described by the Minkowski metric ηab =
diag(+1, −1, −1, −1). When working on manifolds with torsion, it 
is possible to construct geometries which are globally flat but have 
a non-trivial geometry.

Let us begin with the tetrad formalism, where the fundamental 
variable is the tetrad field ea

μ , related to the spacetime metric 
through the relation

gμν = ηabea
μeb

ν . (1)

An additional structure on the manifold is the affine structure, 
defining the rule of parallel transport, fully characterised by the 
spin connection. While in General Relativity the connection is as-
sumed to be the torsion-free Levi-Civita connection, in teleparallel 
gravity the connection is assumed to satisfy the condition of zero 
curvature

Ra
bμν(ωa

bμ) = ∂μωa
bν − ∂νω

a
bμ + ωa

cμωc
bν − ωa

cνω
c

bμ ≡ 0 ,

(2)

which is solved by the pure gauge-like connection [11,12] given by

ωa
bμ = �a

c∂μ�b
c , (3)

where �b
c = (�−1)c

b . Such spaces are often referred to as 
Weitzenböck spaces who established the possibility of this con-
struction in the 1920s.

The torsion tensor of this connection

T a
μν(ea

μ,ωa
bμ) = ∂μea

ν − ∂νea
μ + ωa

bμeb
ν − ωa

bνeb
μ , (4)

is generally non-vanishing, and transforms covariantly under both 
diffeomorphisms and local Lorentz transformations. It can be de-
composed as follows

Tλμν = 2

3
(tλμν − tλνμ) + 1

3
(gλμvν − gλν vμ) + ελμνρaρ , (5)

where

vμ = T λ
λμ , (6)

aμ = 1

6
εμνσρ T νσρ , (7)

tλμν = 1

2
(Tλμν + Tμλν) + 1

6
(gνλvμ + gνμvλ) − 1

3
gλμvν , (8)
are three irreducible parts with respect to the local Lorentz group, 
known as the vector, axial, and purely tensorial, torsions, respec-
tively.

Teleparallel models of gravity are based on the torsion ten-
sor while GR is formulated using the curvature. The most studied 
teleparallel model is the teleparallel equivalent of general relativity
(TEGR), or teleparallel gravity for short, where the Lagrangian is as-
sumed to take the form

LTEGR = e

2κ
T . (9)

The so-called torsion scalar T is defined by1

T = 3

2
Tax + 2

3
T ten − 2

3
Tvec , (10)

where we have defined three invariants

T ten = tλμνtλμν = 1

2

(
Tλμν T λμν + Tλμν T μλν

)
− 1

2
T λ

λμTν
νμ ,

(11)

Tax = aμaμ = 1

18

(
Tλμν T λμν − 2Tλμν T μλν

)
, (12)

Tvec = vμvμ = T λ
λμTν

νμ . (13)

The above Lagrangian (9) is equivalent to the Einstein–Hilbert ac-
tion up to a boundary term. Hence, the TEGR field equations are 
equivalent to the Einstein’s field equations.

The first modified gravity model based on the framework of 
teleparallel gravity was new general relativity, discussed in [8]. It is 
a natural and simple generalization of Lagrangian (9), where the 
coefficients in the torsion scalar (10) are assumed to take arbitrary 
values, this means

LNGR = e

2κ

(
a0 + a1Tax + a2T ten + a3Tvec

)
, (14)

where the four ai are arbitrary constants. The number a0 can be 
interpreted as the cosmological constant.

In the recent decade, another straightforward generalization of 
Lagrangian (9) became increasingly popular after it was shown to 
be able to explain accelerated expansion of Universe without in-
voking the dark sector [2–6]. This model is known as f (T ) gravity, 
where the Lagrangian is considered to be an arbitrary function of 
the torsion scalar (10). Its action is given by

L f (T ) = e

2κ
f (T ) . (15)

Another generalization that found applications in cosmology is 
teleparallel dark energy, where the torsion scalar (10) is assumed 
to be non-minimally coupled to the scalar field [13], or possibly 
the scalar field is coupled to the vector torsion or the boundary 
term which relates the Ricci scalar with the torsion scalar [14].

Recently, there has been an increased interest in conformal 
gravity models that have many attractive features, see for in-
stance [15]. As it turns out, it is possible to construct conformal 
gravity in the teleparallel framework leading to conformal teleparal-
lel gravity [16]. This model has second order field equations, which 
are much simpler than those of the usual Weyl gravity based on 
the square of the conformal Weyl tensor. The Lagrangian of this 
model is taken to be quadratic in the torsion scalar

1 We remark that it is far more common to write the torsion scalar as T =
1
4 T ρ

μν Tρ
μν + 1

2 T ρ
μν T νμ

ρ − T λ
λμTν

νμ , which is equivalent to our definition [12]. 
We follow here the definition in terms of the irreducible parts of the torsion, simi-
larly to NGR [8]. As we will show in Section 4, the main advantage of this approach 
is the much simpler transformation properties under conformal transformations.
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LCTG = e

2κ
T̃ 2 , (16)

where T̃ is the torsion scalar taken from the new general relativity 
Lagrangian (14), with coefficients a1 = 3/2, a2 = 2/3, a3 = 0. There-
fore, this model combines some elements of f (T ) gravity and New 
General Relativity. It is interesting to note the absence of the vec-
tor torsion in the Lagrangian. We will return to this observation in 
section 4.

All these models consider the Lagrangian to be a function of 
torsion only and do not include its derivatives, as a result of which 
the equations of motion are always second order. However, it is 
possible to include derivatives of torsion and deal with fourth (or 
possibly higher) order equations. Among such models, the best 
motivated one is f (T , B) gravity, where we include the ‘bound-
ary’ term B = (2/e) ∂μ(evμ). For a particular form of the argu-
ment, we can obtain the usual f (R) gravity taking into account 
f (−T + B) = f (R). Moreover, it is possible to introduce derivatives 
of torsion in other ways as well [17].

3. New class of modified teleparallel gravity models

All teleparallel models discussed in the previous section, except 
for new general relativity and teleparallel conformal gravity, as-
sume the torsion scalar to take the same form as in the teleparallel 
equivalent of general relativity. While this is well-motivated by the 
fact that the general relativity limit is easily achievable, these are 
not the most general models one can consider. The main objective 
of our work is to develop a general scheme to formulate new mod-
ified teleparallel models that would naturally include all the above 
models and allow us to analyse their general properties.

3.1. Functions of irreducible torsion pieces

For this purpose, we will combine the ideas of f (T ) gravity and 
the approach put forward in (14) by generalising this action to an 
arbitrary function of the three irreducible torsion pieces. Hence, let 
us consider the following Lagrangian

L = e

2κ
f (Tax, T ten, Tvec) +LM , (17)

which naturally includes all previous models. Since the torsion 
pieces only contain first partial derivatives of the tetrad, the re-
sulting field equations will be of second order.

The field equations for the Lagrangian (17) are the usual Euler–
Lagrange equations which we can write symbolically as

δL
δea

μ
≡ ∂L

∂ea
μ

− ∂ν
∂L

∂ea
μ,ν

= 0 . (18)

Since these equations are fairly complicated, we introduce a short-
ened notation which will allow us to introduce, more easily, fur-
ther generalisations of this theory. Let us begin with writing the 
field equations as

e

2κ
Ea

μ f + e

2κ

δ f

δea
μ

= 
a
μ , (19)

where for the first term on the left-hand side, we have used the 
identity ∂e/∂ea

μ = eEa
μ . The term on the right-hand side is the 

energy-momentum tensor defined by


a
μ = 1

e

δLM

δea
μ

. (20)

Both these terms are the same as in the ordinary teleparallel grav-
ity or f (T ) gravity. The novel terms emerge from the variations of 
the new function f . We write
δ f

δea
μ

= δ f

δea
μ

∣∣∣∣
vec

+ δ f

δea
μ

∣∣∣∣
ax

+ δ f

δea
μ

∣∣∣∣
ten

. (21)

The first two of these three terms are given by

δ f

δea
μ

∣∣∣∣
vec

= 2 f Tvec

(
vμωρ

aρ − viωμ
ai − T μ

ai vi − vμva

)

− 2 ∂ν

[
f Tvec(vμEa

ν − vν Ea
μ)

]
, (22)

δ f

δea
μ

∣∣∣∣
ax

= −2

3

[
εib

cd f Taxai
(

Ec
μT b

ad − Ed
μωb

ac

)

+ ∂ν

(
εia

cd f Taxai EcνEd
μ
)]

, (23)

respectively. The final term is slightly more involved and is given 
by

δ f

δea
μ

∣∣∣∣
ten

= f T ten

(
−2T b

aσ Tb
μσ − T μ

ρσ T ρ
a
σ − T α

ρa T ρ
α

μ

+ T μ
ai vi + vμva + (2Tb

ρμ + T ρ
b
μ − T μ

b
ρ)ωb

aρ

− vμωρ
aρ + viωμ

ai

)
− ∂ν

[
f T ten

(−2Ta
μν + T μν

a

− T νμ
a − vμEa

ν + vν Ea
μ
)]

. (24)

We derived the field equations following the covariant approach 
to teleparallel theories, where the teleparallel connection is non-
vanishing and takes the pure gauge form (3), see [11,18,12,19–21]. 
The theory is in this case manifestly invariant under both coor-
dinate and local Lorentz transformations. To determine the spin 
connection we can follow the situation in f (T ) gravity [22,23], 
and show that the spin connection can be calculated from con-
straints obtained from the variational principle [24]. Alternatively, 
one can decide to work in a particular frame where the spin con-
nection vanishes, which is always possible on the account of the 
pure gauge character of the teleparallel spin connection (3). One 
then naturally looses local Lorentz invariance [25,26] and must re-
strict considerations to the case of good tetrads, which need to be 
calculated following the method of [27,28]. For sake of deriving the 
field equations, both methods yield the same result.

3.2. Inclusion of parity violating terms and higher-order invariants

Action (17) is sufficiently general to include all previously 
known models of modified teleparallel models with second order 
field equations that do not introduce additional fields. For sake of 
completeness of our approach, let us discuss further viable gener-
alizations to obtain models with second order field equations that 
are possible in this teleparallel framework.

We can recall here that three invariants (11)–(13) are the most 
general, quadratic, parity preserving, irreducible torsion invariants 
[8]. If we relax the requirement of parity preservation, we have 
two new quadratic parity violating invariants [8] which are

P1 = vμaμ , and P2 = εμνρσ tλμνtλ
ρσ . (25)

We can then naturally consider a straightforward generalization of 
the gravity Lagrangian in the following way

L = e

2κ
f (Tax, T ten, Tvec, P1, P2) (26)

and derive the corresponding field equations.
The Lagrangian (26) is the most general Lagrangian taken as a 

function of all invariants quadratic in torsion. However, since we 
consider the Lagrangian to be an arbitrary non-linear function, we 
can also consider higher order invariants obtainable in this frame-
work. For an illustration, let us consider the two invariant quartic 
torsion terms
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S1 = tλμν vλaμvν , S2 = tλμνaλvμaν . (27)

It is obvious that we can construct a large number of such higher-
order invariants. We note that S1 is a pseudo-scalar while S2 is a 
true scalar under spatial inversions. In principle, we can include 
all of them in the Lagrangian and the resulting field equations 
will be still of the second order. The derivation of the correspond-
ing field equations is rather straightforward using our previous 
results, but becomes increasingly involved with an increasing num-
ber of allowed invariants in the Lagrangian. Therefore, we should 
exercise caution and consider only well-motivated terms in the La-
grangian. This is the reason why we primarily focus on Lagrangian 
(17), which can be considered to be general enough to include 
all previous models, allowing us to analyse some of their generic 
properties, and still have rather manageable field equations.

3.3. Inclusion of the boundary term and derivatives of torsion

Another possible extension of the model (17) is to include the 
derivatives of torsion. This results in theories with higher-order 
field equations, which start to be increasingly complicated when 
adding further terms. Therefore, one should again exercise caution 
and consider only those derivative terms that are well-motivated.

One of such well-motivated terms is the so-called boundary 
term

B = 2

e
∂μ(evμ) , (28)

which relates the torsion scalar of teleparallel gravity (10) and the 
Ricci scalar2

R = −T + B , (29)

in the action (17). This is motivated by recent work on the 
so-called f (T , B) gravity model, which for the particular choice 
f (−T + B) yields the teleparallel equivalent of the popular f (R)

modified gravity model [7]. The boundary term is also key in un-
derstanding the differences of f (T ) and f (R) gravity. For instance, 
one of the features of f (T ) gravity is that the field equations are 
of second order while the f (R) gravity field equations are of 4th 
order. It is precisely the boundary term B which contains second 
derivatives of the tetrads which, after using integration by parts 
twice, gives the 4th order parts of the field equations seen in f (R)

gravity.
We can then include the boundary term and consider the La-

grangian

L = e

2κ
f (Tax, T ten, Tvec, B) . (30)

As we will see in following section, this Lagrangian naturally ap-
pears in the analysis of conformal transformations of our model. 
The corresponding field equations will be given by (21) with an 
addition of terms corresponding to the variation of the boundary 
term, which were reported in [7]. For a detailed derivation of the 
variation with respect to the boundary term, see Eq. (24) or Ap-
pendix A in [7].

4. Conformal transformations

4.1. Basic equations

It is interesting to study this theory under conformal transfor-
mations and the resulting issues of coupling in the Jordan and 

2 We would like to stress out that the Ricci and torsion scalars are geomet-
ric quantities defined with respect to two different connections: Levi-Civita and 
teleparallel, respectively.
Einstein frames. The first paper which dealt with conformal trans-
formations in modified teleparallel theories was [29]. In that paper, 
the author showed that it is not possible to have an equivalent Ein-
stein frame in f (T ) gravity. Thus, for example, it is not possible to 
constraint f (T ) gravity using post-Newtonian parameters from a 
scalar field equivalent theory. Therefore, it would be interesting to 
analyse if this characteristic is also valid for our new general class 
of teleparallel theory. Let us now consider the conformal transfor-
mation properties of the theory given by the Lagrangian (17). We 
introduce the label (index) A = 1, . . . , 4, and introduce two sets of 
four auxiliary fields φA and χA . This allows us the rewrite the ac-
tion as

S = 1

2κ

∫ [
f (φA) + χ1(Tax − φ1) + χ2(T ten − φ2)

+ χ3(Tvec − φ3) + χ4(B − φ4)
]

e d4x . (31)

Variations with respect to χA yield the four equations

φ1 = Tax , φ2 = T ten , φ3 = Tvec , φ4 = B . (32)

Additionally, varying with respect to φA one arrives at

χA = ∂ f (φB)

∂φA
:= F A . (33)

Therefore, action (31) can be rewritten as

S = 1

2κ

∫ [ 4∑
B=1

F B(φA)φB − V (φA)
]

e d4x , (34)

where we have defined the energy potential as

V (φA) =
4∑

B=1

φB F B − f (φA) . (35)

Next, let us apply a conformal transformation to the metric

ĝμν = �2(x)gμν , ĝμν = �−2(x)gμν , (36)

where � is the conformal factor. When conformal transformations 
are applied at the level of the tetrad, we have

êa
μ = �(x)ea

μ , Êμ
a = �−1(x)Eμ

a , ê = �4e . (37)

Using these transformations we find that the torsion tensor trans-
forms as

T̂ ρ
μν = T ρ

μν + �−1(δ
ρ
ν ∂μ� − δ

ρ
μ∂ν�) . (38)

Hence it is possible to verify that

Tax = �2 T̂ax , (39)

T ten = �2 T̂ ten , (40)

Tvec = �2 T̂vec + 6�v̂μ∂̂μ� + 9ĝμν(∂̂μ�)(∂̂ν�) , (41)

B = �2 B̂ − 4�v̂μ∂̂μ� − 18∂̂μ�∂̂μ� + 6

ê
�∂̂μ(ê ĝμν∂̂ν�) .

(42)

This shows that the irreducible torsion pieces Tax and T ten trans-
form very simply, they are multiplied by the conformal factor �2.
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4.2. Minimal and non-minimal couplings

Using the above relationships, action (34) takes the following 
form

S = 1

2κ

∫ [
F1(φA)�−2 T̂ax + F2(φA)�−2 T̂ ten

+ F3(φA)
(
�−2 T̂vec + 6�−3 v̂μ∂̂μ� + 9�−4 ĝμν(∂̂μ�)(∂̂ν�)

)

+ F4(φA)
(
�−2 B̂ − 4�−3 v̂μ∂̂μ� − 18�−4∂̂μ�∂̂μ�

+ 6

ê
�−3∂̂μ(ê ĝμν∂̂ν�)

)
− �−4 V (φA)

]
ê d4x . (43)

From here we can see that if F4(φA) = 0, or in other words, if the 
function does not depend on the boundary term B , it is not pos-
sible to eliminate all the terms related to T̂ μ in order to obtain a 
non-minimally coupled theory with Ti or a theory minimally cou-
pled to the torsion scalar (an Einstein frame). Integrate by parts the 
two terms B̂ and the term (6�/ê)∂̂μ(ê ĝμν∂̂ν�), we can rewrite 
the above action as follows

S = 1

2κ

∫ [
F1(φA)�−2 T̂ax + F2(φA)�−2 T̂ ten + F3(φA)�−2 T̂vec

+ 2�−2 v̂μ
(

3F3(φA)�−1∂̂μ� − ∂μF4(φA)
)

+ 9F3(φA)�−4 ĝμν(∂̂μ�)(∂̂ν�)

− 6�−3(∂μ�)∂μF4(φA) − �−4 V (φA)
]

ê d4x . (44)

Now, let us study the case where we eliminate all the couplings 
between the scalar field and T̂ μ (or equivalently B). To do that, 
we must impose the following constraint

3F3(φA)�−1∂μ� − ∂μF4(φA) = 0 . (45)

By taking derivatives ∂ν to this equation and then by substituting 
back into (45), we can find the following condition

∂ν F3(φA)∂μF4(φA) = ∂μF3(φA)∂ν F4(φA) , (46)

which expressed in terms of the initial function f (φA) reads

∂2 f (φA)

∂φ3∂φC

∂2 f (φA)

∂φ4∂φB
= ∂2 f (φA)

∂φ3∂φB

∂2 f (φA)

∂φ4∂φC
. (47)

Here, we have used the chain rule to evaluate

∂ν F B(φA) = ∂νφC
∂2 f (φA)

∂φB∂φC
. (48)

In general, the above equation (47) is a system of sixteen dif-
ferential equations. However, this reduces to six because the in-
volved second order partial derivatives commute. However, these 
six equations are not all linearly independent. One can show that, 
in fact, only three of them are linearly independent, namely

f (0,0,1,1)(φA)2 = f (0,0,0,2) f (0,0,2,0)(φA) , (49)

f (0,1,1,0)(φA) f (0,0,0,2)(φA) = f (0,0,1,1)(φA) f (0,1,0,1)(φA) , (50)

f (1,0,1,0)(φA) f (0,1,0,1)(φA) = f (0,1,1,0)(φA) f (1,0,0,1)(φA) . (51)

Recall here that φA = {Tax, T ten, Tvec, B}. We can directly see that 
for the special case where f = f ( 3

2 Tax + 2
3 T ten − 2

3 Tvec, B) =
f (T , B), the second and third equations are automatically satisfied 
and only (49) is needed to eliminate all the couplings between the 
scalar field and T̂ μ . This result is consistent with Eq. (91) reported 
in [30].

If we are interested on finding a theory where the scalar field is 
minimally coupled with the torsion scalar (in the Einstein frame) 
we must impose
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F2(φA) = 3

2
F3(φA) . (52)

itionally, the conditions (49)–(51) must also hold to eliminate 
 couplings with T̂ μ . By solving these equations, we directly find 
t the Einstein frame is recovered if

ax, T ten, Tvec, B) = f
(
−3

2

(−3

2
Tax − 2

3
T ten + 2

3
Tvec + B

))

= f
(
−3

2
(−T + B)

)
= f

(
−3

2
R
)

= f̃ (R) ,

(53)

ich is f̃ (R) gravity. As expected, the unique theory with an Ein-
n frame is either the teleparallel equivalent of general relativity 
f (R) gravity. From our computations, one can understand bet-
why modified teleparallel theories of gravity do not have an 

stein frame formulation. We have noticed that Tax and T ten
sforms in a simple way under conformal transformations and 

 problematic term which creates this issue comes from the term 
c. This is not possible to see directly if one starts with f (T )

vity. Furthermore, the boundary term B is a derivative of the 
torial part (not the other pieces), so that only theories which 
tain B might remove the problematic terms coming from the 
formal transformations in Tvec. In principle, one could have 
culated that it is possible to remove those new problematic 
ces with other kind of theories (not just f (R) gravity), but as 
have shown here, this is not possible for other theory different 
n f (−T + B) = f (R) gravity or TEGR gravity.

onclusions

It is well known that it is possible to decompose the torsion 
sor in three irreducible parts: axial torsion Tax, a tensorial part 

and vector torsion Tvec component. In [8], the so-called new 
eral relativity theory was introduced, where the action is con-
cted by a linear combination of these irreducible parts of tor-
. Motivated by this work, in this paper we have proposed a 
 modified teleparallel theory of gravity which generalises and 

ludes all of the most important and well-motivated second or-
 field theories that can be constructed from torsion. In this 
ory, instead of considering a linear combination of those irre-
ible parts, a function of them f (Tax, T ten, Tvec) is proposed in 
 action. Additionally, we have included the possibility for the 
ction to depend on the boundary term B , allowing the theory 
ave an f (R) gravity limiting case.

Starting with this general theory, Fig. 1 shows a classification 
the various theories which can be constructed and their rela-
ships. The most relevant theories in the present discussion are 

hlighted in boxes. Let us begin with f (Ti, B) gravity. This the-
 is an arbitrary function of the three torsion pieces and the 
ndary term but could be generalised further, as discussed in 
tion 3.2. It is a large class of theories which contains many of 
 most studied modified gravity (metric and teleparallel) models 
pecial cases. As one can see, new general relativity (NGR), con-
al teleparallel gravity (CTG), f (T ) and f (R) gravity and other 

l-known theories are part of our approach. Two models which 
e not been studied so far and might be interesting from a the-
tical point of view are f (T̂ ), which corresponds to a modified 
formal teleparallel theory of gravity and f (TNGR) which has a 
r connection to standard General Relativity.

We also explored some generic properties of this new gener-
ed theory such as its behaviour under conformal transforma-
s. We found that the boundary term B is needed in the theory 
rder to obtain a corresponding equivalent Einstein frame of the 

ory. As expected, we have proved that besides TEGR, the unique 
ory with Einstein frame is f (−T + B) = f (R) gravity.
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Fig. 1. Relationship between different modified gravity models and General Relativity. In this diagram T is the scalar torsion, Ti = (Tax, T ten, Tvec), TNGR = a1 Tax + a2 T ten +
a3 Tvec represents the scalar coming from the new general relativity theory and T̃ = 3

2 Tax + 2
3 T ten is the scalar coming from the conformal teleparallel theory. The abbrevia-

tions NGR, CTG and TEGR mean new general relativity, teleparallel conformal gravity and teleparallel equivalent of general relativity respectively.
In principle, one can use this theory to analyse generic proper-
ties of teleparallel gravity theories. As a future work it would be 
interesting to analyse certain characteristics of this theory. For ex-
ample, one can study FLRW cosmology and study its properties in 
order to investigate which model is most suitable to describe dark 
energy (see for example [31]). Another interesting work would 
be to use Noether’s symmetry theorem to find the symmetries 
of this theory [32], or use dynamical system techniques to study 
generic properties of this model [33,34]. By doing this, we would 
be able to see if the symmetries of the theory can provide us with 
more information about the features of the full theory. In addition, 
a possible extension of the modified teleparallel Gauss–Bonnet the-
ory f (T , B, TG , BG) described in [35] can be proposed in order 
to construct a general and well-motivated 4th order theory con-
structed based on torsion.
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